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Outline

« Some observations:
— Proliferating zoology of QH-mode states
— Its the cross-phase, ...

— Questions

* Re-visiting MHD Turbulent ELM-free states:
— Findings
— The phase, again

 Toward a unified scenario
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Some Observations

* QH states are proliferating...

— EHO (Garofalo, et. al.)
— Wide pedestal, turbulent (may coexist with EHO) (Burrell, Chen)
— LCO (Barada)

« Strong ExB shear is common element to all

* Cross phase dynamics is critical:

— Phase evolves, dynamically

— Contrast fixed value, as familiar in QL models
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Some Key Questions:

* If EHO < coherent phase dynamics, slips, locking
then

Turbulent QH < stochastic cross phase evolution?

€= existing work suggests yes.

* How connect/unify coherent, turbulent regimes?

N.B. Easy to see that strong V; is beneficial in both scenarios
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|) Basic Notions
ELM Bursts vs Turbulence:

Consequence of Stochastic Phase Dynamics

- See P.W. Xi, X.-Q. Xu, P.D.; PRL 2014
P.W. Xi, X.-Q. Xu, P.D.; PoP 2014, 2015
Z.B. Guo, P.D. PRL 2015
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Model and equilibrium in BOUT++
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Contrast perturbation evolution
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® Single mode: Filamentary structure is generated by linear instability;

® Multiple modes: Linear mode structure is disrupted by nonlinear mode interaction and no
filamentary structure appears — turbulent state
=» reduced tendency to penetrate outwards




- Cross Phase Dynamics Regulates

Outcome of P.-B. Evolution



Peeling-Ballooning Perturbation Amplification is
set by Coherence of Cross-Phase

l.e. schematic P.B. energy equation:

9 P

~ (#,.P) > energy release from V(P)
—> quadratic

+ X T C (k' K" )Eq Ex,y — X Ty C(K', e ) By E, - dissipation

~ 7

nonlinear mode-mode

. - quartic
coupling

NL effects
- energy couplings to transfer energy (weak)
- response scattering to de-correlate ¢ , P = regulate drive
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Growth Regulated by Phase Scattering

T, > phase coherence time

I / (7,-P) = net growth = intensity field = crash?
VP, > P

\ transfer - dissipation (weak)

Critical element: relative phase

op = arg [ﬁn/é)\n]

Phase coherence time sets growth
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Cross Phase Exhibits Rapid Variation in Multi-Mode Case

(a) * Single mode case -

coherent phase set by

linear growth - rapid

growth to ‘burst’

 Multi-mode case -2

phase de-correlated by

,| 1| ' ' i mode-mode scattering

-> slow growth to

0 50 Two = turbulent state
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Key Quantity: Phase Correlation Time

« Ala’ resonance broadening (Dupree ‘66):

9p4+5.-7P 7P —Dy2p = —p. &
atP+v VP +(v)-VP —DV-P = vrdr(P)

/ N I\
Nonlinear Linear streaming  Ambient
scattering (i.e. shear flow) diffusion
~ . . . — Relative phase < cross-phase
P =A4et? N.B.: In essence, amplitude
T~ Amplitude ‘slaved’ to phase

V=B<— Velocity amplitude

> 0.$+7-Vh+(w() Vh—DV2—=2VA-V§ =0
NL scattering \shearing i
0A+ 7 VA+(w(r) VA+D(V) A—DV?4 = —BL(P)

Damping by phase fluctuations
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Phase Correlation Time

1

Stochastic advection:

— =k Dy -k+k*D

Tck

qu = Ygr Tder |T7J_k|2

Stochastic advection + sheared flow:

=» Coupling of radial scattering and

1 1/3
a ~ (ki (D¢ + D)(vl)' 2) Shearing shortens phase correlation

Tck (Rq)?

1

= Strong (V)' benéeficial
Parallel conduction + diffusion:

, 1/2
§2k% p (D n D)] / =» Coupling of radial diffusion
I\~ and conduction shortens phase correlation
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What is actually known about fluctuations

in relative phase?

« For case of P.-B. turbulence, a broad PDF of phase correlation times is

observed. Further studies needed, especially 1) V effects, 2) EHO synergy

0 7020 T
| .
0.15 -
| — =15
N . n= 20
P % 0.10
of 7,
0.05
000 ......... y 1 A M 1
0 10 20 30 40 50

phase coherence time 7, (r,)

=< UCSD



Implications for: i) Bursts vs Turbulence
i) Threshold

Key: Peaked (coherent) vs Flat (stochastic)

growth spectrum
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Bursts, Thresholds

« P.-B. turbulence can scatter relative phase and so reduce/limit

growth of P.-B. mode to large amplitude

* Relevant comparison is:

vi (linear growth) vs i (phase de-correlation rate)

« Key point: Phase scattering for mode k set by ‘background
modes k"’ i.e. other P.-B.’s (or micro-turbulence) - where from?

=» is the background strong enough?? < - profile of excitation!
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The shape of growth rate spectrum determines burst or turbulence
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Modest y(n) Peaking = P.-B. turbulence

y(n)

0.10 |

time = O

0.00
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* Evolution of P-B turbulence toroidal mode number n

 No filaments
* Weak radial extent

a=-2u,RP,q> /B’




Stronger Peaking y(n) = ELM Crash

time = O

Bl 0.00

 ELM crash is triggered
 Wide radial extension
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Y (n) Peaking VERY Sensitive to Pressure Gradient

Normalized pressure gradient y(n)
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Filamentary structure may not correspond to that of the most unstable
mode, due nonlinear interaction
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O Triggering and the generation of filamentary structure are different processes!
v' ELM is triggered by the most unstable mode;
v" Filamentary structure depends on both linear instability and nonlinear mode

interaction.
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Criterion for the onset of ELMs y > 0 is replaced by the nonlinear criterion

0.14 [

0.12 |

0.02

Yy>ve~1/7,
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e Criterion for the onset of ELMs

yr. >Inl0= y > In10 =v.
TC
* Linear limit
lim, ., =y>0

c

* Y. is the critical growth rate which is determined by nonlinear
phase scattering by background turbulence
* N.B.1/t_.-andthus y,; -arefunctionals of y;(n) peakedness



Partial Summary

Multi-mode P.-B. turbulence or ~ coherent filament formation

can occur in pedestal

Phase coherence time is key factor in determining final state

and net P.-B. growth

Phase coherence set by interplay of nonlinear scattering with

‘differential streaming’ in P response = V;; highly favorable
Key competition is y; vs 1 / 7. = defines effective threshold

Peakedness of y(n) determines burst vs turbulence
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So, is this relevant to turbulent QH state?

Appears yes:

Reconciles { Turbulence (microscopic)

Absence of ELM burst/collapse

Exploration of strong (VV;)' regimes should only strengthen

case, by shortening 7. by increased phase scattering

Larger number of modes in turbulence increases phase

scattering
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Towards a Unified Scenario (?!)

* |s there a connection between EHO/coherent and turbulent

state?
* Elements:

— (Vg -
Locking/slip

— Non-trivial phase evolution via .
Scattering

6. 50 = ky Ax (Vi)' — :?/:(p)smqb+6qb

AN AN
shearing drive scattering

* Really: locking vs scattering
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« Considerations suggest:

= Regulate ¢ by wgyp

Peaked _ |
y(n) locking to MHD drive
9‘[ Phase slips, etc
coherent state
Broad =>» Regulate ¢ by mode-induced
y(n)

scattering of ¢, enhanced by Vg
- -[ turbulent state

« States are not exclusionary. May be synergistic.
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SO

« ExB shear can help by phase locking or/and phase scattering
« (Strongly) coherent and stochastic phase states are clear limits

< -2 What macro control parameters set y(n) spectral structure?
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Things to Pursue

Separate ExB effects i.e. { Phase

. . Response Function
Modelling + Experiment P

Characterize turbulence/fluctuations { Long, k,p < 1

in turbulent, LCO states Short, k&, p ~ 1 content

Characterize phase scattering rates by fluctuation
measurements i.e. 6¢ =2 1., A etc. Is k; p < 1 scattering

sufficient to regulate PB? Or Is process multi-scale?

Characterize transitions between different types OH -

changes in fluctuations =1CSD



BACK UP
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ELMs can be controlled by reducing phase coherence time
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* ELMs are determined by the product y(n)z.(n);
* Reducing the phase coherence time can limit the growth of instability;

* Different turbulence states lead to different phase coherence times and,
thus different ELM outcomes
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Keys to 7.

« Scattering field
- ‘differential rotation’ in P response to o,

- enhanced phase de-correlation

Knobs: Mitigation States:
- ExB shear - QH mode, EHO
- Shaping - RMP
- Ambient diffusion - SMBI
- Collisionality -
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